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Abstract

Observational methods are fundamental to the study of human behavior in the behavioral sciences. For example, in the context of
research on intimate relationships, psychologists’ hypotheses are often empirically tested by video recording interactions of couples and
manually coding relevant behaviors using standardized coding systems. This coding process can be time-consuming, and the resulting
coded data may have a high degree of variability because of a number of factors (e.g., inter-evaluator differences). These challenges pro-
vide an opportunity to employ engineering methods to aid in automatically coding human behavioral data. In this work, we analyzed a
large corpus of married couples’ problem-solving interactions. Each spouse was manually coded with multiple session-level behavioral
observations (e.g., level of blame toward other spouse), and we used acoustic speech features to automatically classify extreme instances
for six selected codes (e.g., “low” vs. “high” blame). Specifically, we extracted prosodic, spectral, and voice quality features to capture
global acoustic properties for each spouse and trained gender-specific and gender-independent classifiers. The best overall automatic sys-
tem correctly classified 74.1% of the instances, an improvement of 3.95% absolute (5.63% relative) over our previously reported best

results. We compare performance for the various factors: across codes, gender, classifier type, and feature type.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

In psychology and psychiatry, behavioral observation is
essential for diagnosis for children and adults, and it is also
a means for monitoring change during psychotherapy,
where both therapist and client engage in, and respond
to, continuous, albeit usually unsystematic, behavioral
observation. The importance of observable behavior for
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researchers and therapists is borne of the fact that behavior
is typically the best objective measure of psychologically
relevant phenomena available. Self-reports of even obvious
behaviors can be notoriously unreliable (O’Brien et al.,
1994).

Although most observation in psychological and psychi-
atric practice has been unsystematic, systematic observa-
tional research has been central to numerous intra- and
interpersonal psychological problem domains including
depression (Baucom et al., 2007), bi-polar disorder (Fred-
man et al., 2008), anxiety (Beck et al., 2006), schizophrenia
(Briine et al., 2008), autism (Keen, 2005), alcoholism (Sho-
ham et al., 1998), domestic aggression (Margolin et al.,
2004), and marital distress (Heyman, 2001). In each of
these areas, observational research has identified behaviors
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exhibited by individuals who suffer from such problems
(and behaviors exhibited by family members and loved
ones of afflicted individuals) that are associated with
increased symptomatology and reoccurrence of disorders.

Behavioral observation has been used with considerable
success in the study and treatment of intimate relation-
ships. Current theory suggests, and recent empirical find-
ings validate (Karney and Bradbury, 1995; Gonzaga
et al., 2007), that spouses’ behavior is a central and defining
aspect of intimate relationships that links broad cultural
factors, longstanding life experiences, and current stressors
to the stability and quality of marital relationships.

However, the methods used in behavioral observation
do present some challenges. To test research hypotheses,
psychology and other fields in the behavioral sciences
oftentimes rely heavily upon observational coding of
audio-video data; for example, in family studies research,
psychologists use a variety of established coding standards
describing characterizations of specific behavior patterns of
interest that guide human annotation of data (Margolin
et al., 1998). This manual coding is a costly and challenging
process. First, a detailed coding manual must be designed,
which can be a complex iterative task (Kerig and Baucom,
2004).

After the creation of an appropriate coding manual,
multiple coders, each with his/her own biases and limita-
tions, must be trained in a consistent manner on held-out
but representative data. In some cases, coders must meet
a predetermined minimum level of agreement with a
“gold-standard” coder on training data before they can
code real data. To avoid coder drift, some coding protocols
require coders to be evaluated periodically and retrained if
necessary (Kerig and Baucom, 2004). In addition, for lon-
gitudinal studies lasting several years, it is usually only fea-
sible to have disjoint sets of coders, which adds another
source of variability to the resulting coded data.

The actual coding process can be mentally straining and
inefficient. Multiple coders oftentimes code the same data
to allow for the computation of both code reliability and
inter-rater reliability. Each coder observes the audio-video
data and marks relevant behavioral phenomena according
to the coding manual (e.g., in continuous time, in quan-
tized time intervals, at the session-level). The complexity
of the coding process determines the speed at which data
can be coded, with more complex protocols taking orders
of magnitude longer than real-time (e.g., Hops et al.,
1971). To prevent evaluator fatigue, coders are often lim-
ited to coding for short periods of time in one sitting. Over-
all, the coding process is limited by the inherent subjective
and qualitative nature of human descriptions of human
behavior.

Technology has the potential to aid in coding human
behavioral data. Computers are better suited to track
and quantify certain behavioral phenomena that may
be challenging, or even impossible, for humans to do.
For example, whereas a human observer might have a
qualitative idea of how a speaker’s pitch may be chang-

ing, engineering algorithms can estimate and track the
pitch of a speaker using quantitative methods at fine
temporal granularities. Pitch, and other low-level descrip-
tors (LLDs) of human behaviors (Schuller et al., 2007),
can be extracted using well-developed signal processing
methods, which in turn can be mapped to relevant
high-level human behavior via machine learning
algorithms.

Computer technology has the advantage of automati-
cally analyzing data in a consistent, repeatable manner.
In addition, computational algorithms can be incremen-
tally improved, benefiting from more data and improved
methodologies. Another obvious advantage of computer
technology is that it will not fatigue. Finally, whereas cur-
rent human behavioral methods are not scalable to coding
large amounts of data over long periods of time, computer
technology is highly scalable. Technology can also be mod-
ularized, with separate algorithms specializing in modeling
specific human behaviors, which could make the technol-
ogy adaptable from one domain of research to another dis-
tinct but overlapping domain.

Our aim in this work is to augment the observational
power of the researcher and therapist with novel computa-
tional tools and techniques. Specifically, we explore the
power of objective signal-based measures (speech-derived
audio cues), extracted during real marital discussions, in
predicting perceptual observations made by evaluators
trained on a manual human behavioral coding system.
Thus, our goal is to emulate human evaluators observing
human behavior.

This research is part of a growing field, behavioral signal
processing (BSP), aimed at better connecting the behav-
ioral sciences with signal processing methods. Traditional
signal processing research (e.g., speech recognition, face/
hand tracking) concentrated on modeling more objective
human behaviors (e.g., “what was spoken?”’). BSP builds
upon traditional engineering tools and methods to model
more abstract human behaviors in realistic scenarios that
are especially relevant in psychology and related fields
(e.g., the question “is one spouse blaming the other?” in
marital therapy).

Significant work related to BSP has concentrated on
extracting human-centered information from audio-video
signals, including social cues (Vinciarelli et al., 2009), affect
and emotions (Lee and Narayanan, 2005; Grimm et al.,
2007; Schuller et al., 2009a; Yildirim et al., 2010), and
intent (Jurafsky et al., 2009). The increased push to analyze
realistic human interactions and naturalistic data (as
opposed to acted or artificially constrained data) is most
evident in the affective computing and emotion recognition
communities (Campbell, 2000; Douglas-Cowie et al., 2003,
2007; Devillers et al., 2005; Devillers and Campbell, 2011;
Burkhardt et al., 2009).

This paper builds upon some of our recent work in
applying the basic ideas of BSP using the Couple Therapy
corpus (Christensen et al., 2004), discussed in detail in
Section 2. This corpus consists of recordings of a husband
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and wife spontaneously discussing a problem in their rela-
tionship. Each spouse’s behavior was manually coded with
a number of session-level codes (e.g., level of blame
expressed, global positive affect). In (Black et al., 2010),
we showed that we could extract speech acoustic features
that separated spouses’ extreme behaviors significantly bet-
ter than chance for three of the six behavioral codes we
analyzed. In (Lee et al., 2010), we developed quantitative
methods to model prosodic entrainment behavior between
the spouses; couples rated as behaving more positive were
found to have statistically significantly higher levels of pro-
sodic entrainment compared to couples rated as being
more negative. In addition, the entrainment features were
able to discriminate positively rated interactions from neg-
atively rated ones.

This paper represents an extension of Black et al. (2010),
in which we analyze the same corpus. In this work, we
improved upon our speaker segmentation method, which
allowed us to analyze a larger percentage of the data in
the corpus. We also took greater care in normalizing fea-
ture streams to combat variable acoustic conditions and
speaker-dependencies. In addition, we experimented with
new acoustic feature types and new techniques to map
these features from the frame-level to the session-level.
Finally, we compared various machine learning techniques
to automatically predict the behavioral codes for the
spouses. These extensions produced an absolute improve-
ment of 3.95% in classifying the six behavioral codes, com-
pared to the best results reported in (Black et al., 2010).

Section 2 describes the Couple Therapy corpus, and Sec-
tion 3 provides a methodological overview. We explain
how we pre-processed the data in Section 4. Section 5 dis-
cusses the acoustic features we extracted to model the
spouses’ behavior, while Section 6 describes the learning
methods and algorithms used to predict the spouses’
behavioral codes. The results are presented and discussed
in Section 7, and the conclusions and intended future work
are provided in Section 8.

2. Couple Therapy corpus

The original study that produced the data we refer to as
the Couple Therapy corpus was a multi-year, multi-univer-
sity collaboration between researchers in the department of
psychology at the University of California, Los Angeles
and the University of Washington (Christensen et al.,
2004). The main purpose was to test the efficacy of integra-
tive behavioral couple therapy (IBCT, Christensen et al.,
1995) versus traditional behavioral couple therapy (e.g.,
Baucom et al., 1998) for treating severely and stably dis-
tressed couples who were not likely to benefit from other
forms of couple therapy. This study became the largest lon-
gitudinal, randomized control trial of psychotherapy for
severely and stably distressed couples and led to a number
of psychology publications (Christensen et al., 2004, 2006,
2010; Baucom et al., 2009). Based in large part on the
success of IBCT as documented in these publications,

IBCT is currently one of only four empirically supported
interventions for relationship distress.

One hundred and thirty-four seriously and chronically
distressed couples (all male-female pairs) were recruited
in Los Angeles, California (71 couples) and Seattle, Wash-
ington (63 couples) and randomly split between the two
couple therapy conditions. The recruitment inclusion crite-
ria included: the couples being legally married and living
together, both spouses speaking fluent English, being
between the ages of 18 and 65, and having at least a high
school education or its equivalent.

Recruited couples were married a mean of 10.0 years
(SD = 7.60) at the beginning of the study. The mean age
of the recruited wives was 41.6 years (SD = 8.59), and
the mean age of the husbands was 43.5years
(SD = 8.74). The mean number of years of education was
17.0 for both the wives and husbands (SD = 3.23 for wives,
SD = 3.17 for husbands). The majority of the participants
were Caucasian (wives: 76.1%, husbands: 79.1%); other
well-represented ethnicities included African American
(wives: 8.2%, husbands: 6.7%), Asian or Pacific Islander
(wives: 4.5%, husbands: 6.0%), and Latina/Latino (wives:
5.2%, husbands: 5.2%).

Each couple received up to 26 sessions of therapy over
the course of one year. As part of the study, research staff
had couples select two current, serious relationship prob-
lems, one chosen by each partner, and then had them
engage in two dyadic discussions in which they were
instructed to try to understand and resolve these respective
relationship problems. There was no therapist or research
staff present during these sessions, and the couple inter-
acted for ten minutes about the wife’s chosen topic and
ten minutes about the husband’s chosen topic; these two
ten-minute sessions were considered separate and analyzed
separately.

The problem-solving interactions were recorded at three
points in time across the study: pre-therapy, the 26-week
assessment, and the two-year post-therapy assessment.
The audio-video data consist of a split-screen video
(704 x 480 pixels, 29.97 fps) and a single channel of far-
field audio recorded from the videocamera microphone
(16 kHz, 16-bit). Since the data were originally only
intended for manual coding, the recording conditions were
not ideal for automatic analysis; the video angles, micro-
phone placement, and background noise varied across cou-
ples and across sessions.

The audio-video recordings in the original study were
used to manually code each spouse with relevant high-level
behavioral information. Two separate rating systems
(“coding manuals”) were developed and used. Both were
designed for use by ndive raters who were fluent in English
and have a layperson’s understanding of human interaction
(Sevier et al., 2008). The Social Support Interaction Rating
System (SSIRS) measured both the emotional content of
the interaction as well as the topic of conversation (Jones
and Christensen, 1998). It consisted of 19 questions
(“codes™) across four categories: affectivity, dominance/
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Table 1

A list of the 32 codes in the two human behavioral coding systems: Social Support Interaction Rating System (SSIRS) and Couples Interaction Rating

System (CIRS).

Manual Codes

SSIRS Global positive affect, global negative affect, use of humor, sadness, anger/frustration, belligerence/domineering, contempt/disgust, tension/
anxiety, defensiveness, affection, satisfaction, solicits partner’s suggestions, instrumental support offered, emotional support offered,
submissive or dominant, topic a relationship issue, topic a personal issue, discussion about husband, discussion about wife

CIRS Acceptance of other, blame, responsibility for self, solicits partner’s perspective, states external origins, discussion, clearly defines problem,
offers solutions, negotiates, makes agreements, pressures for change, withdraws, avoidance

Table 2

Correlation between each of the six codes, as well as the correlation between spouses’ ratings and the inter-evaluator agreement for each of the codes.

Pearson’s correlation was the chosen metric.

Code Code correlation Spouse Agreement
acc bla pos neg sad Correlation
acc 0.647 0.751
bla —0.80 0.470 0.788
pos 0.67 —0.54 0.667 0.740
neg —-0.77 0.72 —0.69 0.690 0.798
sad —-0.18 0.19 —-0.18 0.36 0.315 0.722
hum 0.33 —0.20 0.47 -0.29 —0.15 0.787 0.755

submission, features of the interaction, and topic defini-
tion. The Couples Interaction Rating System (CIRS) con-
sisted of 13 codes and was specifically designed for
coding problem-solving discussions (Heavey et al., 2002).
All 32 codes had written guidelines and were on an integer
scale from 1 (“none/not at all”) to 9 (“a lot”). Table 1 lists
the 32 codes in the two coding manuals.

Multiple coders rated each session (one set of 32
codes for each spouse) after watching the video at most
two times. The number of coders per session ranged
from 2 to 12, with 91.1% of the sessions being rated
by 3 or 4 evaluators. Evaluator judgments were based
on observation of the entire interaction and were at
the session-level; no finer-grained codes were attained
(e.g., utterance-level, turn-level). Evaluators were told
to focus on one spouse (the “target spouse”) when
observing each interaction. They were encouraged to
use information in both verbal and nonverbal channels
when rating the spouse and to take into account both
the frequency and intensity of particular behaviors, as
well as the context in which they occur.

All coders were undergraduate students at the Univer-
sity of California, Los Angeles. They each underwent a
training period to give them a sense for what was typical
behavior and to help standardize the coding process. First,
the coders rated acted videos of couples that exemplified
low and high ratings of the codes. Then, coders compared
their ratings with those of expert psychologists and dis-
cussed the differences. Evaluators began coding the real
data once they demonstrated a reasonable level of reliabil-
ity with the expert’s ratings; inter-rater reliability varied
depending on the code, as exemplified in Table 2 and
explained in further detail in (Sevier et al., 2004). Typically
the training process took approximately 15 hours. Evalua-
tors continued to attend weekly two-hour training meetings

to prevent drift and to ensure high reliability (Sevier et al.,
2008). In total, 37 individual coders were trained across the
two coding systems. It should be noted that disjoint sets of
coders were used for the two coding manuals (a coder was
only trained to rate the SSIRS or the CIRS), but coders
rated couples across time periods.

As part of the original study, the sessions were manually
transcribed for the purpose of analyzing the language use
of each spouse (Atkins et al., 2005; Baucom et al., 2009;
Williams-Baucom et al., 2010). They used the IBM Via-
Voice speech transcription software, and the data took,
on average, three to six times real-time to transcribe. The
resulting word-level transcriptions were chronological,
with the speaker explicitly labeled for each word (husband
or wife). Nonverbal communication was marked in the
transcriptions (e.g., laugh, sigh, throat clear, long pause).
Spoken names and other proper nouns were de-identified
in the transcriptions for privacy reasons, and transcribers
also marked regions in which they could not understand
the speech; in total, 0.98 percent of the words were either
de-identified or unknown. In portions with overlapping
speech, transcribers attempted to separate out words from
each speaker, but regions of speech overlap were not
explicitly marked. No timing information was provided
in the transcriptions.

There are 574 ten-minute sessions with corresponding
transcriptions in the Couple Therapy corpus. Five of these
sessions were missing the codes from the two psychology
rating systems. This left 569 coded sessions, totaling
95.8 hours of data across 117 unique couples.

3. Methodology overview

The Couple Therapy corpus provides a unique opportu-
nity to test BSP methods/algorithms on data collected in an
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Fig. 1. Normalized histograms of the extreme code scores for the wife (top) and husband (bottom). The “low” scores are in the bottom 20%, and the
“high” scores are in the top 20%. The decision boundary was used to compute an upper-bound for automatic performance.

ecologically valid setting that meets the stringent standards
used in behavioral science research. In addition, the size of
the corpus makes it appealing for exploring data-driven
BSP methods. Although the data quality is not optimal
for automated processing, repeating the study to attain
higher quality recordings of couples’ interactions would
entail a multi-year effort (for recruiting, subject scheduling,
etc.). Furthermore, while the high variability in the record-
ing conditions are a source of exaggerated noise, data qual-
ity variability may be present even in corpora collected
with high-quality recording equipment, consistent sensor
locations, and controlled acoustic/visual environmental
conditions (e.g., Rozgi¢ et al., 2010). We believe that ana-
lyzing this existing large corpus offers a veritable testbed
for this domain of BSP research.

In this paper, our goal was to provide analysis toward
automatically learning a subset of the 32 codes using fea-
tures derived from the audio signal. The following subsec-
tions explain the various design decisions we made. Section
3.1 describes the subset of codes we analyzed, and Section
3.2 explains the classification set-up for all experiments.
Section 3.3 provides an overview of our methodology: data
pre-processing, acoustic feature extraction, and supervised
learning of the behavioral codes. Sections 4-6 provide
more detailed descriptions of these three components,
respectively.

3.1. Codes of interest

For clarity and to make the results comparable to our
previous work (Black et al., 2010), we chose to only analyze
the following six codes with the highest inter-evaluator
agreement: level of acceptance toward the other spouse
(abbreviated “acc”), level of blame (“bla”), global positive
affect (“pos”), global negative affect (“neg”), level of sad-
ness (“sad”), and use of humor (“hum”). Appendix A pro-
vides the written guidelines for the six codes. It should be
noted that each code measures how much that particular
code occurred, not how much the opposite of the code
occurred. Therefore, it is possible for a spouse to receive
high scores for both global positive affect and global nega-
tive affect.

Table 2 shows how the six codes are correlated, as well
as the correlation between spouses’ ratings and the inter-
evaluator agreement for each of the six codes; Pearson’s
correlation coefficient was the chosen metric for all three
computations. When computing the inter-code and spouse
correlations, we used the mean evaluator scores for each
instance. The agreement statistics were computed as the
correlation between individual evaluator’s scores and the
mean scores of the other evaluators. All six selected codes
had inter-evaluator agreement greater than 0.7; the remain-
ing codes not analyzed in this paper had inter-evaluator
agreement that ranged from 0.4 to 0.7.

We see in Table 2 that the positive codes (acc, pos, hum)
were all positively correlated with each other, the negative
codes (bla, neg, sad) were all positively correlated with each
other, and the positive codes were negatively correlated
with the negative codes; this agrees with intuition. We also
see in Table 2 that the two spouses’ behaviors were posi-
tively correlated for all six codes; this suggests that, on
average, the interacting spouses displayed similar
behaviors.

3.2. Classification task formulation

As described in Section 2, multiple coders rated each ses-
sion (both spouses) for each behavioral code on a scale
from 1 to 9. Thus, there are multiple ways to pose this
learning problem for automatically predicting the behav-
ioral code scores. Since there were disjoint sets of coders
used, we ignored individual evaluator effects and treated
each evaluator in the same manner.

Furthermore, we simplified the code learning problem
by posing it as a binary classification problem, with
equal-sized classes. We only analyzed sessions that had
mean evaluator scores that fell in the top 20% (“high”)
and bottom 20% (“low”) of the code range for both gen-
ders; see Fig. 1. Therefore, our goal was to separate the
extreme couples’ behavior ratings for the six codes. A sim-
ilar data-separating procedure was used in our previous
paper (Black et al., 2010) and in related work (Jurafsky
et al., 2009; Ranganath et al., 2009). This is a good starting



6 M.P. Black et al. | Speech Communication 55 (2013) 1-21

Table 3

Upper-bound for automatic performance, computed as the percentage of
individual coder scores that were within the decision boundary between
the “low” and “high” code score groupings.

Gender acc bla pos neg sad hum AVG
Wife 96.7 99.6 985 98.6 939 965 97.3
Husband 96.7 98.1 974 98.0 849 971 95.4

point in trying to learn these subtle high-level behavioral
codes.

As shown in Fig. 1, the “low” and “high” mean scores
for the six codes are separable, i.e., the average coder scores
for these extreme sessions do not overlap. However, this
does not mean that individual coder scores were separable
for this artificially created subset of the data. We produced
an “upper-bound” for automatic performance by comput-
ing the level of individual human agreement with these low
and high average score groupings. This was done by com-
puting the percentage of individual evaluator scores (for
the sessions in the top/bottom 20% of the code range) that
fell within a code-specific decision boundary, which was
placed halfway between the maximum “low” code score
and the minimum “high” code score. These decision
boundaries are shown in Fig. 1, and the upper-bounds in
code performance for the wife and husband are listed in
Table 3. We see in this table that all of the upper-bounds
were between 96% and 100%, except for level of sadness,
which dipped as low as 84.9% for the husband; this is
due to the fact that there is less separation between the
extreme code scores (see Fig. 1).

3.3. Classification system overview

See Fig. 2 for a high-level system block diagram, which
depicts the basic components of our methodology. First,
we pre-processed the corpus by: (1) eliminating sessions
that were too noisy, (2) automatically segmenting the ses-
sions into single speaker regions, and (3) eliminating ses-
sions for which we could not attain reliable speaker
segmentation. These pre-processing steps were taken to

eliminate sessions that were too noisy for the purpose of
acoustic pattern recognition and to facilitate the extraction
of spouse-specific acoustic features.

We estimated each session’s average signal-to-noise
ratio (SNR) and eliminated noisy sessions with an SNR
less than 5 dB. To segment the corpus into single speaker
regions, we used the available word-level transcriptions
with speaker labels and Saildlign (Katsamanis et al.,
2011a), software that implements a recursive speech-text
alignment algorithm. To ensure we had at least a majority
of the speech segmented for both spouses, we ignored all
sessions for which we were unable to segment at least
55% of both the wife’s and husband’s words.

For this paper, we extracted a set of low-level descrip-
tors motivated by related work in both psychology and
engineering, that along with their functionals resulted in
a large set of over 40,000 features. This feature set was used
to learn all six codes; code-specific features were not
extracted. The features were static functionals (e.g., mean)
of low-level descriptors (LLDs, e.g., intensity), computed
over each speaker domain (e.g., wife regions) and at various
temporal granularities (e.g., 0.5 s windows). Therefore, this
feature extraction process mapped frame-level LLDs to
session-level features that represented various acoustic
properties of the spouses/interaction.

We extracted prosodic, spectral, and voice quality
LLDs. The prosodic LLDs included: voice activity detector
(VAD) estimates, speaking rate, fundamental frequency
(fo), and intensity. The spectrum-based LLDs included
Mel-frequency cepstral coefficients (MFCCs) and log
Mel-frequency bands (MFBs), and the voice quality
(V.Q.) LLDs included jitter and shimmer. We normalized
the raw LLD streams by speaker, since our goal was to
train speaker-independent models for each of the behav-
ioral codes.

We trained separate binary classifiers for each code. We
experimented with two popular linear classifiers: support
vector machines (SVM) with linear kernel and logistic
regression (LR), and two types of regularization: * and
I'. Regularization was applied to make the estimation of
the feature linear weight coefficients more robust. In the

PRE-PROCESSING

FEATURE EXTRACTION

LLD Estimation
VAD

I I“ Audio '

CLASSIFICATION
Static | Scale Features
Functionals ¥
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Fig. 2. A system block diagram, illustrating the methodology taken in this paper, from pre-processing the data and extracting acoustic features to

classifying extreme instances of a particular code as low/high.
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case of I' regularization, a sparse solution is found, which
facilitated an analysis on the relative importance of the
features.

We used leave-one-couple-out cross-validation to sepa-
rate training and test data; this was done to ensure that
the reported results were representative of practical train-
ing conditions in which data from a couple would typically
not be available. Note that we did not use leave-one-ses-
sion-out cross-validation because some couples had more
than one session in the top/bottom 20% for a particular
code. All classifier parameters were optimized at each
train/test fold using a second stage of 5-fold couple-disjoint
cross-validation on the training data. To evaluate classifier
performance, we pooled all the test class hypotheses and
computed the percentage of correctly classified instances
(“accuracy”). Chance baseline accuracy was 50%, since
we have equal-sized classes.

We trained gender-specific and gender-independent
models and compared performance. The gender-specific
models may generalize better, since it is well-documented
that there are inherent gender differences in how distressed
couples express themselves (Christensen and Heavey,
1990). However, the gender-independent models may ben-
efit from having twice as much training data, since the gen-
der-specific models are only trained on the instances of a
single gender.

4. Data pre-processing
4.1. SNR estimation

Due to the variable acoustic nature of the Couple Ther-
apy corpus, we first set out to estimate the signal-to-noise
ratio (SNR) of each session, so we could disregard sessions
that were too noisy to analyze. For each session’s audio
file, we ran a voice activity detector (VAD) that hypothe-
sized whether each 10 ms interval was speech or non-
speech. This VAD used a novel long-term signal variability
measure, which describes the degree of non-stationarity of
the signal, to robustly discriminate speech from silence and

background noise (Ghosh et al., 2010). It was specifically
designed as a front-end for automatic speech recognition
(ASR) and was optimized to detect regions of non-speech
longer than 300 ms. We trained the VAD on a 60 s audio
clip from one of the held-out sessions with the missing psy-
chology codes (see Section 2).

We used the VAD output to estimate the average SNR
of each session’s audio file using Eq. (1), where {4,} € S is
the set of amplitudes endpointed within the speech regions
(according to the VAD), and {A4,} ¢ S is the complement
set of amplitudes (deemed to be non-speech by the VAD):

1 2
SNR(dB) = 101og10"'ﬁs'24’65A;, (1)
mZiﬁAi

Fig. 3 shows a histogram of the estimated average SNR for
the 569 coded sessions. We heuristically decided to only
analyze sessions with an average SNR greater than 5 dB.
This was done to ensure that the audio features could be
reliably extracted. Of the 569 coded sessions, 415 had an
average SNR greater than the chosen threshold of 5dB
(72.9%). The other 154 sessions were deemed too noisy
for the present work.

4.2. Speaker segmentation

Since the Couple Therapy corpus consists of dyadic con-
versations, we set out to segment the sessions by speaker.
This would then allow us to model the interaction appro-
priately and extract meaningful features for each spouse.
In many pattern recognition research involving realistic
and complex multi-person interactions, it is common prac-
tice to manually segment the data into speaker turns as a
pre-processing step. This is typically done for a number
of reasons: it ensures that system errors are due to other
design factors (e.g., features, learning algorithm); it circum-
vents the added overhead of implementing automatic seg-
mentation; achieving sufficient performance using
automatic methods may be too challenging due to inherent
data limitations (e.g., far-field sensors, variable acoustic

Histogram
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15 20 25

SNR (dB)

Fig. 3. A histogram of the estimated average signal-to-noise ratio (SNR) for each of the 569 coded sessions, computed using Eq. (1).
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Transcription
Wife: YEAH I DO
Husband: ME TOO

VAD MFCC

Output: Aligned

Speaker Regions

Chunking

AM Adaptation

Find Anchors |

Aligned Unaligned
Regions Regions

Fig. 4. Block diagram of the “hybrid” manual/automatic speaker segmentation procedure, implemented using SailAlign. See Section 4.2 and Katsamanis

et al. (2011a) for details.

conditions). However, manually segmenting a corpus of
this size was not practical and is not scalable.

In this paper and in our previous work (Black et al.,
2010), we took a unique “hybrid” manual/automatic
speaker segmentation approach that exploited the available
transcriptions with speaker labels. We implemented a
recursive ASR-based procedure to align the transcription
with the corresponding audio using SailAlign (Katsamanis
et al., 2011a), open-source software we developed as part of
this work. The iterative algorithm was based on the work
by Moreno et al. (1998), with the extension that aligned
portions of the audio were used to adapt the acoustic mod-
els at each iteration.

Fig. 4 is a block diagram of the procedure, showing the
flow from the required inputs to the desired output of
speaker-segmented audio. Generic acoustic models (AM)
and session-specific language models (LM) were used to
run ASR on the audio file, aided by the VAD that split
the MFCC feature vector sequence into 15 s chunks.
Anchor regions were accepted if aligned portions between
the reference transcript (REF) and ASR transcript (HYP)
contained at least three consecutive words. The process
was then iterated between anchor regions, with AM adap-
tation at each iteration. See Katsamanis et al. (2011a) for
full details on the algorithm.

After SailAlign converged, the session was split into wife
and husband speaker-homogeneous regions and unknown
regions in which speech-text alignment could not be
achieved (due to multiple factors, including: noisy audio,
speaker overlap, and transcription errors). Note that
unknown regions that occurred in the middle of a speaker’s
turn could be merged with the neighboring speaker-homo-
geneous regions. Fig. 5 shows that this interpolation-like
procedure allowed us to segment 8.7% more words per ses-
sion, on average, into speaker-homogeneous regions. This
figure also shows that we were still not able to align or seg-
ment a large percentage of the words in the transcription
for some of the 415 sessions that met the 5 dB SNR thresh-
old. For this paper, we ignored the 43 sessions in which we
could not segment at least 55% of both the wife’s and hus-
band’s transcribed words into speaker-homogeneous
regions. This left 372 sessions that met both the SNR

100
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801 .

-
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40F
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Fig. 5. The percentage of words aligned using SailAlign and the
percentage of words that were subsequently segmented into single speaker
regions for the 415 sessions with SNR greater than 5 dB.

Session (ordered)

and speaker segmentation criteria; counting only these ses-
sions, an average of 90.7% of the wives’ words and 89.9%
of the husbands’ words were segmented into speaker-
homogeneous regions.

This speaker segmentation procedure provided us
hypotheses on when each spouse was speaking, but since
we did not have access to the ground-truth times for these
speaker turns, we did not have an easy way to evaluate the
speaker segmentation performance. One way would be to
randomly sample speaker-homogeneous regions and man-
ually verify the speaker. Rather than relying on this labori-
ous method, we instead devised a procedure that exploited
the female-male nature of the dyadic interaction partici-
pants in this corpus.

250 Husband ’:
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Fig. 6. The ordered mean fundamental frequency (f,) estimates for the
wife and husband in each of the 372 coded sessions that met the SNR and
speaker segmentation criteria.
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Table 4

fo statistics for the Couple Therapy (CT) corpus, computed across the 3
speaker regions of the 372 sessions, and compared to the female/male
statistics listed in (Traunmiiller and Eriksson, 1994, p.3).

Speaker Mean f, (Hz) Mean SD of f; (semitones)

CT corpus  Traunmiiller  CT corpus Traunmiiller
Wife 194 211 3.5 34
Husband 121 119 4.0 3.4
Unknown 166 - 5.8 -

The average adult female’s speech has a mean funda-
mental frequency (fy) of about 210 Hz, while for adult
male’s speech, it is about 120 Hz (Traunmiiller and Eriks-
son, 1994). We estimated f; for each session (see Section
5) and computed f, statistics for the husband and wife
across the speaker-homogeneous regions.

Fig. 6 shows that there is a clear separation between the
mean f, values of the wives and husbands (73 Hz on aver-
age). In addition, Table 4 shows that the average f, statis-
tics are similar to the ones reported in (Traunmiiller and
Eriksson, 1994, p. 3), computed from hundreds of adult
speakers of European languages. This f, “sanity check”
implies that the speaker segmentation procedure success-
fully separated the female and male speakers. Importantly,
since fy is a relatively difficult acoustic cue to track, it also
implies that the data quality of the 372 sessions was ade-
quate to robustly extract speech-related audio cues.

In our previous work, in which we used a speech-text
alignment procedure without acoustic model adaptation
(Black et al., 2010), we were only able to achieve a similar
level of speaker segmentation performance for 293 sessions.
Thus, SailAlign enabled us to use 79 more sessions, a rela-
tive increase of 27.0%. In total, these 372 sessions are 65.4%
of the original 569 coded sessions and total 62.8 hours of
data across 104 unique couples.

5. Audio feature extraction

With the 372 sessions segmented by speaker, we are now
able to extract acoustic features that can be used to predict
the six behavioral codes. Spoken cues (e.g., prosody) have
been shown to be relevant indicators of a variety of behav-
iors in the psychology literature (e.g., Juslin and Scherer,
2005; Cowie, 2009), including in those related to marital
interactions (Gottman et al., 1977; Gottman and Krokoff,
1989; Baucom et al., 2009). Affect/emotion are discussed as
critical components to communication and are oftentimes
conveyed vocally.

In our previous paper (Black et al., 2010), we extracted a
number of common prosodic/spectral features that have
been used in a variety of human-centered engineering tasks,
including affect/emotion recognition (Lee and Narayanan,
2005; Grimm et al., 2007; Schuller et al., 2007, 2009a; Lee
et al., 2009; Ranganath et al., 2009; Yildirim et al., 2010).

We examined an expanded set of features in this paper
by taking an overgenerative approach to feature extraction.

This was done for three main reasons: (1) while there is
considerable insight in psychology literature on cues that
are informative in marital discussions, it is difficult to come
up with mappings from these semantic cues to correspond-
ing signal cues, (2) in addition to being informed by psy-
chology, we can also learn from our findings (see Section
7, Fig. 8), and (3) this work represents the first attempt
to automatically learn high-level behavioral codes with
acoustic features for this corpus. Thus, we explored many
common feature types, so a comparison could be made
and improved upon in subsequent studies.

In total, we extracted 40,479 session-level features for
the gender-specific models and 67,465 session-level features
for the gender-independent models. We refer to these as
session-level because they describe some aspect of the
spouses’ behaviors across the entire session. As introduced
in Section 3.3, the session-level features were computed as
static functionals of low-level descriptors at various tempo-
ral granularities over each speaker domain of the session.
Therefore, each session-level feature is described by four
components: (1) LLD, (2) speaker domain, (3) temporal
granularity, and (4) functional. Table 5 lists each of these
components and Sections 5.1-5.4 provide further details.

5.1. Low-level descriptors

In this work, we refer to low-level descriptors (LLDs) as
feature streams that are estimated/extracted at fine tempo-
ral resolutions (e.g., every 10 ms). Table 5 lists each of the
LLDs we selected for this paper, based on our previous
work (Black et al., 2010) and on the 2009 Interspeech Emo-
tion Challenge (Schuller et al., 2009a) and 2010 Interspeech
Paralinguistic Challenge (Schuller et al., 2010).

We computed the mean syllable speaking rate for each
aligned word directly from the automatic word alignment
results with the help of a syllabified pronunciation dictio-
nary, developed for a speech production modeling toolkit.>
Therefore, this speaking rate LLD was at the word-level
and only applicable to words that were aligned with Sail-
Align (see Section 4.2). Another LLD we extracted directly
from the alignment results (when available) were the inter-
turn durations, measured as the time in seconds from the
end of one speaker’s turn to the beginning of the next
speaker’s turn.

We used the VAD speech/non-speech hypotheses to cre-
ate two LLD vectors: one with the durations of all the
speech regions (when the VAD deemed the audio to be
speech for consecutive frames), and another with the dura-
tions of all the non-speech regions.

We next extracted the following LLDs across each
speech region every 10 ms using a 25 ms Hamming window:
fundamental frequency (fp), intensity, 15 Mel-frequency
cepstral coefficients (MFCCs), 8 log Mel-frequency bands
(MFBs), local jitter, jitter-of-jitter (delta jitter), and local

2 http://www.haskins.yale.edu/tada_download/index.php.
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Table 5

A list of the four components (with sub-components) that make up the session-level features. The starred (*) functionals are the six “basic” functionals.
The speaker domains marked with a 1 are only applicable to the gender-independent models.

Component  Sub-component

LLD Speaking rate, inter-turn pauses, speech/non-speech (VAD), fy, Intensity, 15 MFCCs, 8 MFBs, jitter, jitter-of-jitter, shimmer

Speaker Rated spouse only, partner of rated spouse only, full session, wife only’, husband only®

Granularity Global, halves, hierarchical (hier.) with window durations: 0.1's, 0.5s, 15, 5s, 10s

Functional ~Mean”, median®, standard deviation®, Ist percentile”, 99th percentile”, 99th — Ist percentile”, skewness, kurtosis, minimum position,
maximum position, lower quartile, upper quartile, interquartile range, linear approximation slope

shimmer. f;, and intensity were extracted with Praat
(Boersma, 2001), and the other LLDs were extracted with
openSMILE (Eyben et al., 2010). The following para-
graphs will describe how we computed and normalized
these various LLDs, with specific attention paid to f, due
to the unique characteristics of the Couple Therapy corpus.

Pitch has been shown to be important in affective speech
production (Juslin and Scherer, 2005) and emotion recog-
nition research (Grimm et al., 2007; Bulut and Narayanan,
2008; Busso et al.,2009a,b; Lee et al., 2009; Yildirim et al.,
2010). fy can be estimated from audio and is related to
pitch perception. Unfortunately, f is relatively difficult to
estimate from speech, since it involves the computation
of periodicity from a non-stationary quasi-periodic signal.
We used Praat’s state-of-the-art autocorrelation function-
based f estimator in this research (Boersma, 2001). How-
ever, since this is a time-domain approach, it is still suscep-
tible to many common errors.

One of the major types of errors for autocorrelation-
based f, estimators is pitch halving/doubling (Murray,
2001; Coy and Barker, 2007; Chen et al., 2004). We
attempted to minimize these f; errors by exploiting the
speaker segmentation and using region-specific f, range
heuristics: 100400 Hz during wife regions, 70-300 Hz dur-
ing husband regions, and 70-400 Hz during unknown
regions. Therefore, we estimated the f, of each session three
separate times with the three region-specific ranges and
chose the appropriate f; estimate based on the speaker seg-
mentation results. The resulting f; signal was then passed
through an algorithm that attempted to fix instances of
pitch halving/doubling by detecting large jumps in the f
difference vector and halving/doubling the f; signal toward
the mean f; value of the speaker.

The f, signal was further processed by zeroing it during
regions deemed by the VAD to be non-speech and interpo-
lating across unvoiced regions with duration less than
300 ms (using piecewise-cubic Hermite interpolation). We
did not interpolate across non-speech regions (according
to the VAD) or speaker-change points. Finally, the f; sig-
nal was median-filtered (with a window of length 5) to
smooth out any spurious noise; see Fig. 7 for an example.

Normalization of the raw LLD streams is important,
since the final session-level features will be used to train
speaker-independent models. We produced two normalized
fo signals to account for inter-person variations in the mean
pitch. The first normalization method, Eq. (2), subtracts
the mean fo(u,) of the speaker (wife, husband, or
unknown) for each frame. The second method, Eq. (3), per-
forms a similar transformation on a logarithmic scale, since
this may be more perceptually motivated (de Cheveigné
and Kawahara, 2002). The p, values were computed
across the whole session using the speaker segmentation
results; unknown speaker regions were treated as coming
from one “unknown speaker.”

folin = fO — Uy (2)

Ton, = log, (Z;) | 3)

The computation of intensity for an audio signal is more
straightforward than estimating fo. We normalized the
intensity LLD to account for differences in microphone lev-
els (caused by variable distances from the microphone to
the speakers). Eq. (4) shows how we normalized each

% | Husband:
ﬁ "think you should feel like that"

" Unknown: '

Wife:

Wife: "but | do so" "l would really”

Husband: <|Iaugh>

1 1 1 1 1 1
121.5 122 1225 123 123.5 124

Time (s)

Fig. 7. Example of the speaker segmentation and processed f, signal. In this particular example, the middle portion (labeled “Unknown”) was unable to be
automatically segmented due to overlapped speech (the husband was laughing while the wife was speaking).
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frame-level intensity value, where the p;,, values were the
mean intensity of the speaker during speech regions, com-
puted across the whole session:
int, — 2 (4)
int

We used openSMILE to extract spectral and voice qual-
ity features using the same parameter settings as the 2010
Interspeech Paralinguistic Challenge (Schuller et al.,
2010). Short-term spectral features have been successfully
used widely in speech processing. We extracted the first
15 MFCCs, computed using the standard bank of 26 trian-
gular filters that were evenly centered along the Mel-fre-
quency scale from 20 Hz to 8000 Hz. To account for
environmental and speaker variability, all MFCCs were
normalized by performing cepstral-mean subtraction, using
Eq. (5), where the pnvpccy;) values were the mean MFCC of
the ith coefficient of the speaker, computed across the
whole session:

MFCC,[i] = MECCIi] — jiypccys =0, 14, (5)

In addition to these normalized MFCCs, we also filtered
the audio with a coarser bank of only 8§ triangular filters
and computed the log energies at the output. These are
the so-called MFB features that are expected to capture
coarser spectral characteristics. The filters were evenly cen-
tered along the Mel-frequency scale from 20 Hz to
6500 Hz.

Finally, we extracted three voice quality LLDs: local jit-
ter, jitter-of-jitter (delta jitter), and local shimmer. Voice
quality attributes have been shown to play a significant role
in communicating emotions (Gobl and Chasaide, 2003),
although most engineering studies have found they are
often less discriminative than the more traditional prosodic
and spectral features (e.g., Schuller et al., 2009b), most
likely because the uncertainty in estimating the voice qual-
ity attributes can overpower the discriminative information
they convey.

All three voice quality LLDs are based on the f, estimates.
Local jitter quantifies period length variations in f; and is
computed as the average absolute difference between consec-
utive periods, divided by the average period length of all
periods in the frame. Jitter-of-jitter is computed as the aver-
age absolute difference between consecutive differences
between consecutive periods, divided by the average period
length of all periods in the frame. Local shimmer quantifies
amplitude variations and is computed as the average abso-
lute difference between the interpolated peak amplitudes of
consecutive periods, divided by the average peak amplitude
of all periods in the frame (Eyben et al., 2010).

5.2. Speaker domains

For all the LLDs described in Section 5.1, we extracted
features across three separate speaker domains for the gen-
der-specific models and five speaker domains for the gen-
der-independent models. See Table 6 for a depiction on

which speech regions (wife and/or husband) were included
in the various speaker domains.

For the gender-specific models, the three speaker
domains were: (1) during speaker-homogeneous regions
(according to the speaker segmentation results) where the
spouse being rated was the speaker (i.e., for the wife-spe-
cific models in which the wife was always being rated, the
rated speaker domain consisted of all the wife speech
regions); (2) during speaker-homogeneous regions where
the partner of the spouse being rated was the speaker;
and (3) across the entire session (regardless of speaker).

For the speaker-independent models, we extracted fea-
tures across five speaker domains: (1) during speaker-
homogeneous regions where the spouse being rated was
the speaker (i.e., for the wife instances, the rated speaker
domain consisted of the wife speech regions, whereas for
the husband instances, the rated speaker domain consisted
of the husband speech regions); (2) during speaker-homo-
geneous regions where the partner of the spouse being rated
was the speaker; (3) across the entire session, regardless of
who was speaking or who was being rated; (4) during
speaker-homogeneous regions where the wife was speaking,
regardless of who was being rated; and (5) during speaker-
homogeneous regions where the husband was speaking,
regardless of who was being rated. These final two speaker
domain sets were not included for the gender-specific mod-
els because they would be identical to the rated/partner fea-
ture sets and therefore add no information. For example,
for the wife-specific models (in which the wife was always
being rated for all instances), the “rated” speaker regions
are always the same as the “wife” speaker regions, and
the “partner” speaker regions are always the same as the
“husband” speaker regions; see Table 6.

Extracting features for these various speaker domains
allowed us to model the behaviors of each spouse and the
overall interaction. Modeling individual spouse behavior
is particularly important since each spouse was rated sepa-
rately. However, as shown in Table 2, extracting features
along the entire session may be just as meaningful, since
the two spouse’s coded behavior within a given session is
often positively correlated.

Table 6
A depiction of which speech regions were included in the five speaker
domains, depending on which spouse was being rated.

Rated spouse Speaker domain Speech in domain?

Wife Husband

Wife Rated spouse I

Partner I

Full session I 174

Wife only v

Husband only I
Husband Rated spouse 7

Partner 7

Full session v 7

Wife only I

Husband only 7
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5.3. Temporal granularities

The temporal granularity component of the session-level
features refers to the time-scale at which we processed the
individual LLDs: (1) global, (2) halves, and (3) hierarchi-
cal. The global temporal granularity looks at the interac-
tion for a particular speaker domain as a whole entity.
Thus, we are viewing each LLD as a representative sample
of data, from which we can extract useful “global” features
about the speaker/interaction. We only extracted global
features in our previous paper (Black et al., 2010).

For the halves granularity, we split each LLD stream
into two halves and computed the difference in functionals
(see Section 5.4) across the two halves. This temporal gran-
ularity attempts to capture gradual changes that may occur
as the discussion progresses.

The hierarchical temporal granularity splits each LLD
stream into disjoint windows of equal duration. Function-
als are then computed across each window, and the session-
level features are then produced by computing functionals
of the functionals; more details are provided in Section 5.4.
The hierarchical temporal granularity was based on the
work by Schuller et al. (2008) and attempts to capture
the variable moment-to-moment changes during the inter-
action. For this research, we tried window durations of
0.1s,0.5s,1s,5s,and 10s. Note that we did not compute
hierarchical features for the speaking rate LLD, inter-turn
pause LLD, or the two VAD-derived speech/non-speech
LLDs, since these LLDs occurred at a longer time scale,
which would have resulted in very few samples within each
window.

5.4. Functionals

For each combination of LLD, speaker domain, and
temporal granularity, we produced the final session-level
features by computing a series of static functionals. See
Table 5 for the full list of 14 functionals that we selected.
Note that the 1st percentile, 99th percentile, and 99th — 1st
percentile represent outlier-robust minimum, maximum,
and range statistics, respectively. We chose to use these per-
centiles to account for cases when the functionals were
computed over a long period of time, which is particularly
relevant for the global features.

We only computed functionals of prosodic and spectral
LLDs over speech regions (according to the VAD), and we
disregarded all zero values (unvoiced regions) when com-
puting the f; and voice quality functionals.

For the computation of the hierarchical session-level
features, we computed the full 14 functionals over each
window. However, to avoid producing an enormous set
of session-level features, we only computed six “basic”
functionals when computing the functionals-of-functionals;
a similar procedure was followed in (Schuller et al., 2008).
These six basic functionals are starred (*) in Table 5. In
addition, since there was only a limited number of aligned
speaker-change points in a session (35.6, on average), we

only extracted the six basic functionals for the inter-turn
pause LLD.

We also extracted a few dynamic features. For the
speech/non-speech (VAD) LLD, we exploited the binary
nature of the signal to extract three more session-level fea-
tures. The first was the probability that a frame was non-
speech. We also computed two features based on first-order
Markov chain statistics: (1) the probability a frame is non-
speech, given that the previous frame was non-speech, and
(2) the probability a frame is non-speech, given that the
previous frame was speech.

6. Prediction of behavioral codes

Given that there were 372 sessions that were deemed
acceptable after pre-processing the corpus (see Section 4)
and we were only analyzing the top/bottom 20% of the ses-
sions for each spouse/code, we selected the top/bottom 70
sessions for our experiments; the number of unique couples
in these 140 selected sessions varied from 68 to 77, depend-
ing on the code and rated spouse. With over 40,000 fea-
tures and only 140 instances for the gender-specific
models and over 67,000 features and only 280 instances
for the gender-independent models, we became concerned
about issues related to dimensionality. However, this type
of underdetermined learning scenario (having many more
features than instances) is commonplace in genomics and
natural language processing problems (Joachims, 1998)
and emotion recognition (Batliner et al., 2011).

In our previous paper (Black et al., 2010), we compared
two classifiers: a support vector machine (SVM) with linear
kernel, and Fisher’s linear discriminant analysis (LDA)
with sequential forward feature selection. In this work,
our initial experiments showed that the LDA did not per-
form as well, most likely due to the high dimensionality
of the feature space and the greedy feature selection
method.

In this paper, we again used linear classifiers since the
dimensionality of the feature space (40,000+) was orders
of magnitude greater than the number of instances (140-
280). We compared four binary linear classifiers: /-regu-
larized SVM with linear kernel (SVM-/7), ['-regularized
SVM with linear kernel (SVM-/'), P-regularized logistic
regression (LR-7), and /'-regularized logistic regression
(LR-1").

The loss functions of the four classifiers, used to find the
optimal weight coefficients, are written in Egs. (6)—(9),
where m is the number of training instances, y, € { — 1,1}
is the class label (low/high) for instance i, x; € R”" is the cor-
responding n-dimensional feature vector, w € R" is the lin-
ear weight vector, ||w||; is the /"-norm of w, and C is a
tuning penalty parameter (C > 0).

While the P-regularized versions of the classifiers (Eqs. 6
and 8) are more commonly used, the /'-regularized classifi-
ers (Egs. 7 and 9) are appealing since they find a sparse
solution (some of the weight coefficients will be identically
zero). This may be advantageous for two reasons: (1) there
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are potentially many irrelevant and redundant features due
to the overgenerative nature of the feature extraction pro-
cess (see Section 5), so dimensionality reduction via sparse
solutions may lead to more robust estimates of the weight
coefficients and improved classification, and (2) sparse
solutions are more interpretable and provide a means to
determine the relative importance of the features.

.1 &
Wsyy 2 = min EWTW + CZ max(0,1 —yw'x,)* |, (6)
i=1

Weyp 1 = Min (||w|l +C> max(0,1— y,,wal-)2>7 (7)

i=1

) (1 n o
Wip_2 = min EWTW—&-C;log(I—Fe TVIX) (8)

Wig = min | [, +C)_ log(l+e ™) ). 9)
i=1

We used the implementations in LIBLINEAR for all
four classifiers (Fan et al., 2008). Note that the primal
forms of the loss functions are written in Egs. (6)—(8) for
clarity. In practice, the dual forms were faster to train;
see Fan et al. (2008) for details.

Prior to training the classifiers, we z-normalized all fea-
tures at each cross-validation fold by subtracting the mean
value in the training set and dividing by the standard devi-
ation. This feature scaling was done to ensure that the reg-
ularization would be applied evenly to all features. As
mentioned in Section 3.3, the tuning parameter C was opti-

Table 7

mized for each classifier at each train/test cross-validation
fold by using a grid search and choosing the value with
the highest average classification accuracy on the training
set using 5-fold couple-disjoint cross-validation.

For all four classifier implementations, we generated a
class hypothesis (¥) on a test instance by taking the sign
of the inner product between the optimal weight vector

(W) and the feature vector (x) of the test instance:
7 = sgn(w'x). (10)

7. Results & discussion

Table 7 displays the results for the wife and husband
instances for all six codes, both model types (gender-spe-
cific and gender-independent), and all four classification
methods (SVM-£, SVM-/', LR-P, and LR-I'). These
results are compared to the baseline chance performance
of 50% accuracy and the upper-bound in performance as
computed from the individual human evaluator scores
(Table 3). We see from Table 7 that the classification per-
formance ranged from below chance accuracy (49.3% for
the husband-specific SVM-/' classifier for sadness) to as
high as 85.7% (for husband’s global negative affect). Per-
formance varied greatly as a function of the various factors
(spouse being rated, model type, classifier, and code). In
this section, we provide statistical analyses to compare
th